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In networks of periodically firing spiking neurons that are interconnected with chemical synapses, we
analyze a cluster state, where an ensemble of neurons are subdivided into a few clusters, in each of which
neurons exhibit perfect synchronization. To clarify stability of the cluster state, we decompose linear stability
of the solution into two types of stabilities, stability of a mean state and stabilities of clusters. Computing
Floquet matrices for these stabilities, we clarify the total stability of the cluster state for any type of neuron and
any strength of interaction even if the size of networks is infinitely large. First, we apply this stability analysis
to investigating synchronization in the large ensemble of integrate-and-fire �IF� neurons. In one-cluster state we
find the change of stability of a cluster, which elucidates that in-phase synchronization of IF neurons occurs
with only inhibitory synapses. Then, we investigate entrainment of two clusters of IF neurons with different
excitability. IF neurons with fast decaying synapses show low entrainment capability, which is explained by a
pitchfork bifurcation appearing in the two-cluster state with change of synapse decay time constant. Second,
we analyze a one-cluster state of Hodgkin-Huxley �HH� neurons and discuss the difference in synchronization
properties between IF neurons and HH neurons.
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I. INTRODUCTION

It has been revealed that periodically firing interneurons
exhibit in-phase synchronization during gamma oscillations
�20–80 Hz� and the sharp wave burst �100–200 Hz� �1�. In-
terneurons are found to be connected through inhibitory
chemical synapses. Therefore, a significant effort has been
devoted to understand a role of inhibitory chemical synapses
in in-phase synchronization in a large ensemble of neurons
�2�. One major analytical approach to investigate synchroni-
zation of neurons is the phase reduction method, in which
behavior of periodically firing neurons are reduced to the
simple phase dynamics �3–6�. This phase reduction method
is, however, applicable only to the case of weak couplings.
To understand a role of strong couplings in synchronization
of neurons we must adopt a different approach.

One difficulty in investigating strongly coupled neurons is
time delayed interactions due to chemical synapses. Taking
account of these time delayed interactions Hansel et al. have
computed a Floquet matrix and analyzed synchronization in
a couple of strongly coupled neurons �4�. The size of this
Floquet matrix, however, increases as the size of neural net-
works increases. Therefore, it is difficult to apply their ap-
proach to investigating the large size of neural networks.

Bressloff et al. have presented another scheme to deal
with chemical synapses, which allows us to analyze the sta-
bility of networks of integrate-and-fire �IF� neurons without
computing the explicit form of a Floquet matrix �5�. In some
large sizes of neural networks they have found the degen-
eracy of eigenvalues, which makes it easy to analyze syn-
chronization of many IF neurons. Actually, such degenerate
eigenvalues in stability analysis are found not only in IF
neurons but also in many synchronization phenomena in-

duced by mean field interactions. A most prominent example
of this degeneracy is seen in synchronization in an ensemble
of chaotic oscillators such as Lorenz equations and logistic
maps �7–10�. Just using the general properties of mean field
interactions we can decompose linear stability of the syn-
chronous state of chaotic oscillators to two different compo-
nents, which define the so-called tangential Lyapunov expo-
nents and transversal Lyapunov exponents. It must be noted
that the result of this decomposition clearly indicates the
occurrence of degeneracy regarding transversal Lyapunov
exponents. Synchronization in many chaotic oscillators is
thus characterized by only a small number of exponents in-
cluded in tangential and transversal Lyapunov spectrum even
if the system size is infinitely large.

In the present paper we employ these sophisticated reduc-
tion techniques in the chaos synchronization theory to inves-
tigate synchronization in the large number of neurons. The
target of the analysis is cluster state, where an ensemble of
neurons are subdivided into a few clusters, in each of which
neurons exhibit perfect synchronization. To evaluate the de-
generacy of eigenvalues we carry out the above-mentioned
decomposition of a linear stability and define the stability of
a mean state �tangential Floquet multipliers� and stabilities of
clusters �transversal Floquet multipliers�. Stability of a mean
state elucidates if the cluster state is stable in the dynamics
among clusters while stabilities of clusters clarify whether
small perturbations in each cluster converge to vanish. We
explicitly compute Floquet matrices of these stabilities for
arbitrary neuron dynamics. Therefore, we can elucidate sta-
bility of the cluster state for any type of neuron, even if the
size of networks is infinitely large and neurons are connected
through strong couplings.

To give a concrete example of the present stability analy-
sis we first analyze networks of IF neurons interacting
through uniform chemical synapses. In this analysis, we find
the change of stability of a cluster, which elucidates that
in-phase synchronization of a large ensemble of IF neurons*Electronic address: myosioka@brain.riken.go.jp
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occurs with only inhibitory chemical synapses. In addition,
we investigate two clusters of neurons with different excit-
ability, and discuss the relationship of their entrainment
properties to the synapse decay time constant. Second, we
analyze the one-cluster state of Hodgkin-Huxley �HH� neu-
rons and discuss the difference in synchronization condition
between IF neurons and HH neurons.

The paper is organized as follows. In Sec. II we present
the dynamics of neural networks that include Q clusters of
spiking neurons. In Sec. III, we present the analysis for the
cluster state of the neural networks. This analysis is applied
to networks of IF neurons in Sec. IV. Then, we analyze syn-
chronization of HH neurons in Sec. V. Finally, in Sec. VI, we
give a brief summary and discuss the future problems that
can be solved by the present approach.

II. NETWORKS OF SPIKING NEURONS COUPLED WITH
CHEMICAL SYNAPSES

We consider a spiking neuron whose state is represented
by n-dimensional vector,

x = �v,w1,w2,…,wn−1�T, �1�

where v represent the membrane potential and �wl�l=1,…,n−1

describe gating of ion channels. Typically, the dynamics of a
spiking neuron is defined by the Hodgkin-Huxley �HH�
equations, FitzHugh-Nagumo �FN� equations, and so on. We
simply represent these neuron dynamics by

ẋ = F�x� . �2�

In the analysis in Sec. III, we assume spiking neurons in the
form of Eq. �2�. Nevertheless, in Sec. IV, we will investigate
integrate-and-fire �IF� neurons, which cannot be expressed
by Eq. �2� since v of IF neuron changes discontinuously.
This discontinuity of the IF neuron requires a minor correc-
tion of the analysis in Sec. III. We will discuss this minor
correction in Sec. IV.

We assume that N spiking neurons �xi� are interconnected
through chemical synapses. To describe the dynamics of syn-
aptic electric currents, we define spike timing by the time
when membrane potential vi= �xi�1 �the first element of vec-
tor xi� exceeds the threshold value �=0. We represent kth
spike timing of neurons i by ti�k�, which satisfies

vi�ti�k�� = †xi�ti�k��‡1 = � �3�

and

v̇i�ti�k�� = �ẋi�ti�k���1 � 0. �4�

Then, the dynamics of networks of spiking neurons is ex-
pressed as

ẋi = Fi�xi� + �Ii,0,…,0�T, �5�

where function Fi�xi� represents the dynamics of neuron i.
Variable Ii represents a sum of synaptic electric currents,
which is defined by

Ii = �
j=1

N

Jij �
k=−�

�

S�t − tj�k�� , �6�

where Jij represents synaptic coupling from neuron j to neu-
ron i, and function S�t� describes time evolution of synaptic
electric current. We assume S�t� taking the form

S�t� = �0, t � 0,

1

�1 − �2
�e−t/�1 − e−t/�2�, 0 � t . 	 �7�

where 0��2��1. Constants �1 and �2 are termed decay time
and rise time, respectively.

A. Neural networks composed of Q clusters of neurons

In some problems, we must consider neural networks in-
cluding several clusters of neurons, such as networks includ-
ing both interneurons and pyramidal neurons. Moreover, we
will later study entrainment of two clusters of IF neurons that
have different excitability between clusters. In the present
study we analyze neural networks that are composed of Q
clusters of neurons. We assume that neurons share the same
dynamical properties within each cluster, that is, we assume

Fi�x� = Fq�x�, i � Uq, 1 � q � Q , �8�

where Uq represents the set of neurons that belong to cluster
q. In addition, we assume that synaptic couplings Jij depend
only on cluster indexes of presynaptic and postsynaptic neu-
rons, that is, we assume synaptic coupling Jij of the form

Jij = J̃qq�/N, i � Uq, j � Uq�. �9�

Substituting Eqs. �8� and �9� into Eqs. �5� and �6� we obtain
the dynamics of the Q clusters of neurons,

ẋi = Fq�xi� + �Iq,0,…,0�T, �10�

Iq =
1

N
�

q�=1

Q

�
j�Uq�

J̃qq��
k

S�t − tj�k��, i � Uq. �11�

Note that synaptic electric current in Eq. �11� depends only
on cluster index q because of the assumption in Eq. �9�.

III. ANALYSIS

A. Cluster synchronization of periodically firing neurons

In the present analysis we focus on cluster state, in which
spike timing of neurons are written in the form

ti
*�k� = tq

*�k� = tq
* + kT ,

0 � tq
* � T, i � Uq, q = 1,…,Q , �12�

where asterisks indicates the quantity in a stationary state. In
this state, neurons emit periodic spikes synchronously within
each cluster. We further assume that in cluster state not only
spike timing but also neuron states are synchronized within
each cluster �i.e., xi

*=xq
* �i�Uq��. Substituting Eq. �12� into
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Eqs. �10� and �11�, we obtain the dynamics of stationary state
as

ẋq
* = Fq�xq

*� + �Iq
*,0,…,0�T, �13�

Iq
* = �

q�

J̃qq�rq�S̃�t − tq�
* � , �14�

where S̃�t� is defined by S̃�t�=�kS�t+kT� and rq=Nq /N rep-
resents the ratio of the number of neurons in cluster q to the
total number of neurons.

To obtain the explicit form of cluster state we must cal-
culate T and t1

* , t2
* ,… , tQ

* so as to obtain Iq
* and xq

*. It is obvi-
ous that we can safely assume t1

*=0, and we can calculate
remaining Q unknown variables, T , t2

* , t3
* ,… , tQ

* from Eqs.
�13� and �14� following the same scheme as our previous
study �11,12�. Note that we can compute these variables not
only for IF neurons but also for general neuron dynamics, as
far as the stable cluster state is concerned.

B. Decomposition of linear stability

To investigate linear stability of cluster state we assume
the infinitesimal deviations of state of neurons,

xi = xq
* + �xi, i � Uq �15�

and infinitesimal deviations of spike timing,

ti�k� = tq
*�k� + �ti�k�, i � Uq. �16�

From Eq. �3�, we obtain

�ti�k� = − �vi�tq
*�k��/cq = − ��xi�tq

*�k���1/cq, i � Uq,

�17�

with

cq = v̇q
*�tq

*�k�� = �ẋq
*�tq

*�k���1. �18�

Note that constant cq is independent of k because of the
periodicity of the solution. To obtain the relation in Eq. �17�,
we must assume continuous neuron dynamics such as HH
neurons and FN neurons. Note that we must carry out the
more careful calculation in discontinuous dynamics like IF
neuron as we will discuss in Sec. IV. Expanding the dynam-
ics in Eqs. �10� and �11� to the first order we obtain the
dynamics for the deviations,

�ẋi = Fq��xq
*��xi + ��Iq,0,…,0�T, �19�

�Iq = −
1

N
�
q�

�
j�Uq�

J̃qq��
k

S��t − tq�
* �k���tj�k� , �20�

where Fq��xq
*� denotes Jacobi matrix.

The naive evaluation of this N�n-dimensional dynamics
yields an eigenvalue problem of the large size of matrix.
Therefore, for each cluster, we define a mean state of neu-
rons,

x̄q =
1

Nq
�

i�Uq

xi �21�

and a mean spike timing,

t̄q�k� =
1

Nq
�

i�Uq

ti�k� . �22�

Noting Eqs. �17�, �19�, and �20�, we can write the dynamics
for �x̄q and �t̄q�k� in the closed form

�ẋ̄q = Fq��xq
*��x̄q + ��Iq,0,…,0�T, �23�

�Iq = − �
q�

J̃qq�rq��
k

S��t − tq�
* �k���t̄q��k� �24�

with

�t̄q�k� = − �v̄q�tq
*�k��/cq = − ��x̄�tq

*�k���1/cq. �25�

Equations �23�–�25� define the decomposed stability of the
original N-body stability. We term this decomposed stability
as stability of a mean state. It must be noted that stability of
a mean state in Eqs. �23�–�25� is effectively a problem in a
network of Q neurons with couplings Jqq�rq� since, to the
first order, Eqs. �23�–�25� are equivalent to

d

dt
�xq

* + �x̄q� = Fq�xq
* + �x̄q� + �Iq,0,…,0�T, �26�

Iq = �
q�

J̃qq�rq��
k

S�t − tq�
* �k� − �t̄q��k�� . �27�

Stability of a mean state is a necessary condition for the
full stability, but not a sufficient condition. To investigate
synchronization of neurons in each cluster we introduce de-
viations around the averaged state,

xi = x̄q + �x̃i, i � Uq. �28�

Subtracting Eq. �23� from Eq. �19� we obtain the dynamics
of �x̃i as

�ẋ̃i = Fq��xq
*��x̃i, i � Uq. �29�

Equation �29� defines another decomposed stability. We term
this decomposed stability as stability of a cluster. Stability of
a cluster q is satisfied when Nq deviations �x̃i �i�Uq� con-
verge into 0. These Nq dynamics are, however, identical.
Therefore, it suffices to evaluate one set of deviations to
determine the stability of one cluster. Note that the determi-
nation of the stability of a cluster is effectively a problem of
single neuron dynamics under the unperturbed synaptic elec-
tric current Iq

* since, to the first order, Eq. �29� is equivalent
to

d

dt
�xq

* + �x̃i� = Fq�xq
* + �x̃i� + �Iq

*,0,…,0�T, i � Uq.

�30�

C. Floquet matrices for stabilities of clusters

We can determine stabilities of clusters following the or-
dinary procedure of Floquet theory. Since the solution xq

* is
periodic, Fq��xq

*� is also periodic. Therefore, a solution of Eq.
�29� is written in the form
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�x̃i�tq
*�k + 1�� = Mq

��x̃i�tq
*�k��, i � Uq. �31�

Calculating Eq. �30� with small initial perturbations we can
obtain every element in matrix Mq

�. n�n matrix Mq
� has n

eigenvalues �	ql
��l=1,…,n. When cluster q is stable, �x̃i �i

�Uq� must converge to zero after a long time. Therefore, the
stability of cluster q is fulfilled when the largest absolute
eigenvalue 
	q1

� 
 satisfies the condition


	q1
� 
 � 1. �32�

D. Floquet matrix for stability of a mean state

Determination of the stability of a mean state is not an
easy problem since the calculation of �Iq in Eq. �24� requires
long past deviations of spike timing. To solve this problem,
following Hansel et al. �4�, we introduce the variables

zq1 = �
q�

J̃qq�rq� �
t
q�
* �k���t

S�t − tq�
* �k�� − �t̄q��k��� , �33�

zq2 = �
q�

J̃qq�rq� �
t
q�
* �k���t

e−�t−t
q�
* �k��−�t̄q��k���/�1. �34�

By means of these variables we can exactly rewrite Iq in Eq.
�27� in the truncated form

Iq = �
q�

J̃qq�rq� �
tq
*�k��t

q�
* �k��

S�t − tq�
* �k�� − �t̄q��k���

+ e−�t−tq
*�k��/�2zq1�tq

*�k��

+ S�t − tq
*�k��zq2�tq

*�k��, tq
*�k� � t . �35�

Therefore, �Iq is written as

�Iq = − �
q�

J̃qq�rq� �
tq
*�k��t

q�
* �k��

S��t − tq�
* �k����t̄q��k��

+ e−�t−tq
*�k��/�2�zq1�tq

*�k��

+ S�t − tq
*�k���zq2�tq

*�k��, tq
*�k� � t . �36�

This means that once we know �zq1�tq
*�k�� and �zq2�tq

*�k��,
we can neglect past deviations of spike timing �t̄q��k�� that
arose before t= tq

*�k�.
To take the advantage of zq1 and zq2, we define the vector

yq = ��x̄q�1,…,�x̄q�n,zq1,zq2�T. �37�

We safely assume tq
*� tq+1

* �q=1,… ,Q−1�. Then, since Eq.
�24� is equivalent to Eq. �36�, from Eqs. �23�, �25�, and �36�
we can show that deviation �xq�tq

*�k+1�� is determined from
only �yq�tq

*�k�� and ��t̄q��kqq���q�=1,…,Q with

kqq� = � k , q � q�,

k + 1, q� � q .
� �38�

Moreover, deviations �zq1�tq
*�k+1�� and �zq2�tq

*�k+1�� are
given as

�zq1�tq
*�k + 1�� = − �

q�

J̃qq�rq�S��tq
*�k + 1� − tq�

* �kqq����t̄q��kqq��

+ e−T/�2�zq1�tq
*�k�� + S�T��zq2�tq

*�k�� , �39�

�zq2�tq
*�k + 1�� =

1

�1
�
q�

J̃qq�rq�e
−�tq

*�k+1�−t
q�
* �kqq���/�1�t̄q��kqq��

+ e−T/�1�zq2�tq
*�k�� . �40�

Therefore, we can also determine �zq1�tq
*�k+1�� and

�zq2�tq
*�k+1�� from the above-mentioned variables,

�yq�tq
*�k�� and ��t̄q��kqq���. We can summarize these relation-

ships in the form

�yq�tq
*�k + 1�� = �

q�=1

Q

Aqq��yq��tq�
* �kqq��� + Bq�yq�tq

*�k�� ,

�41�

where

Aqq� =  ��yq�tq
*�k + 1��

��t̄q��kqq��
−

1

cq�
�0 ¯ 0� �42�

and

Bq =  ��yq�tq
*�k + 1��

���yq�tq
*�k���1

¯

��yq�tq
*�k + 1��

���yq�tq
*�k���n+2

� . �43�

In this equation, Aqq��yq��tq�
* �kqq��� represents the contribu-

tion from �t̄q��kqq��.
In Sec. III C, we obtain Mq

� by calculating Eq. �30� with
small perturbations. In the similar manner, we can compute
Aq and Bqq� explicitly for arbitrary neuron dynamics.
We obtain ��xq�tq

*�k+1�� /��t̄q��kqq�� and ��xq�tq
*�k

+1�� /���yq�tq
*�k���l by calculating Eqs. �26� and �35� with

small perturbations. Partial derivatives of zq1 and zq2 have
been given in Eqs. �39� and �40�. Therefore, we can compute
every element in matrices Aq and Bqq�. For further details of
the calculation of Aq and Bqq� see Ref. �12� �though the
definitions of Aq , Bqq�, and so on in Ref. �12� are slightly
different from the present ones�.

We introduce the vector

Y�k� = �y1�t1
*�k��T

¯ yQ�tQ
* �k��T�T. �44�

Then, we can rewrite the relationship in Eq. �41� in the form

�Y�k + 1� = M��Y�k� �45�

with

M� = MQ
� MQ−1

�
¯ M1

� , �46�

where
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Mq
� =�

E 0

� 0

0 E

Aq1 ¯ Aqq−1 Aqq + Bq Aqq+1 ¯ AqQ

E 0

0 �

0 E

� .

�47�

Matrix Mq
� updates �yq�k� to �yq�k+1�, and hence matrix M�

updates all the deviations. Q�n+2��Q�n+2� matrix M� has
Q�n+2� eigenvalues �	l

��l=1,…,Q�n+2�, in which a trivial eigen-
value 1 is always included as in the case of the ordinary
Floquet matrix. The stability of a mean state is satisfied when
all other eigenvalues are less than 1 in absolute value, that is,
the largest absolute eigenvalue 
	1

� 
 and the second largest
absolute eigenvalue 
	2

� 
 satisfy


	2
� 
 � 1 = 	1

� . �48�

IV. CLUSTER SYNCHRONIZATION IN NETWORKS OF
INTEGRATE-AND-FIRE (IF) NEURONS

Let us apply the above analysis to networks of IF neurons
that are defined as

v̇i = − vi + vr + Iext,q + Ii, i � Uq. �49�

When vi exceeds the threshold value �=0,vi is reset to v0
=−1. The resting potential vr is set to vr=1, which leads to
intrinsic firing of neurons. We assume that these IF neurons
are interconnected with uniform couplings,

Jij =
g

N
. �50�

As we have mentioned, the discontinuity of IF neurons re-
quire a minor correction of the stability analysis in Sec. III.
Since derivative v̇i changes discontinuously at spike timing,
we define cq

−= v̇q
*�tq

*�k�−0� and cq
+= v̇q

*�tq
*�k�+0�. To take ac-

count of discontinuity of vi, we extend the perturbed solution
vq

*+�vi before or after spike timing ti�k�= tq
*�k�+�ti�k� as il-

lustrated in Fig. 1, and then define �vi
−�tq

*�k�� and �vi
+�tq

*�k��.
These deviations satisfy the condition

�ti�k� = − �vi
−�tq

*�k��/cq
− = − �vi

+�tq
*�k��/cq

+. �51�

We define two types of mean state variables, �v̄ q
−

= �1/Nq��i�Uq
�vi

− and �v̄q
+= �1/Nq��i�Uq

�vi
+, and two types

of deviations around the mean state, �vi
−=�v̄ i

−+�ṽ i
− and

�vi
+=�v̄ i

++�ṽ i
+. Neuron i behaves continuously in the time

interval ti�k�� t� ti�k+1�, during which we can carry out the
decomposition of linear stability discussed in Sec. III. There-
fore, noting Eqs. �29�, �49�, and �51�, we obtain

�ṽ i
−�tq

*�k + 1�� = e−T�ṽi
+�tq

*�k�� =
cq

+

cq
−e−T�ṽi

−�tq
*�k�� . �52�

Hence, matrix Mq
� takes the form

Mq
� =  cq

+

cq
−e−T� . �53�

From Eq. �32�, we obtain the condition for stability of cluster
q,


	q1
� 
 = � cq

+

cq
−e−T� � 1. �54�

Following the similar scheme, we can derive matrices
Aqq� and Bq. Substituting Aqq� and Bq into Eqs. �46� and �47�
yields M�, by which we can determine the stability of a mean
state.

A. One-cluster state of IF neurons „Q=1…

We begin with investigating the one-cluster state Q=1. In
this state, all neurons take part in shaping one-cluster in-
phase synchronization. One-cluster solution of Eqs. �13� and
�14� is found with only g�1 since too strong synaptic cou-
plings with g
1 leads to bursting of neurons. To elucidate
the stability of the solution with g�1, assuming �1=3.5,�2
=0.1�1, and Iext,1=0, we calculate 
	1

� 
 , 
	2
� 
, and 
	11

� 
 as a
function of parameter g as shown in Fig. 2�a�. Since the
second largest absolute eigenvalue of M� �i.e., 
	2

� 
� is always
less than 1, the stability of a mean state is always satisfied.
However, the largest absolute eigenvalue of M1

� �i.e., 
	11
� 
�

becomes greater than 1 with excitatory coupling g�0.
Therefore, the stability of a cluster is satisfied with only in-
hibitory coupling g�0. These results imply that while a self-
coupled single neuron �N=1� can exhibit stable periodic fir-
ing with both inhibitory and excitatory couplings, in-phase
synchronization of multiple neurons �N�1� can take place
with only inhibitory couplings g�0. Since the networks
show the same synchronization properties in all the decay
time �1�0, �1−g phase diagram takes the simple form as
described in Fig. 2�b�. It turns out that in-phase synchroni-
zation of a large number of IF neurons occurs with only
inhibitory synapses in all the values �1�0.

Figure 3 shows the result of the numerical simulations.
While the networks with inhibitory couplings �g=−0.5� ex-

FIG. 1. A schematic explaining the definition of �vi
−�tq

*�k�� and
�vi

+�tq
*�k��. Membrane potential of a IF neuron vi changes discon-

tinuously at spike timing tq
*�k�+�ti�k�. When tq

*�k�+�ti�k�� tq
*�k�,

we define �vi
−�tq

*�k�� by extending the solution as shown in the
figure, and we define �vi

+�tq
*�k��=�vi�tq

*�k��. When tq
*�k�� tq

*�k�
+�ti�k�, we define these variables in the opposite way.
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hibits the perfect in-phase synchronization, the network with
excitatory couplings �g=0.5� settles into the asynchronous
state, in which neurons fire periodically with uniformly dis-
tributed phase shifts. Our stability analysis explains these
numerical results well.

B. Two-cluster state of IF neurons (Q=2 and Iext,1=Iext,2=0)

We then investigate the two-cluster state Q=2 for inhibi-
tory coupling g�0 assuming r1=r2=0.5 and Iext,1= Iext,2=0.
It has been shown that a couple of IF neurons exhibit a
pitchfork bifurcation with change of synapse decay time con-
stant �4�. We now show that this pitchfork bifurcation occurs
even in systems of two clusters of neurons. Figure 4 shows
�1−�2 bifurcation diagram, where �2 denotes t2 /T. There are
three types of solutions, inphase ��2=0 ,1�, antiphase ��2

=0.5�, and out-of-phase solutions. Evaluating eigenvalues of
M� , M1

�, and M2
�, we find that the solutions denoted by

thick lines satisfy the stability of a mean state and the sta-
bilities of clusters.

C. Entrainment of two clusters of IF neurons with different
excitability (Q=2 and Iext,1=0ÅIext,2)

We extend the above result to investigate the case when
the excitability of neurons are different between two clusters.

Fixing Iext,1=0, we investigate the behavior of �2 with
change of Iext,2 in Fig. 5. With Iext,2=0, we find three stable
and two unstable solutions, which are consistent with the
preceding results in Fig. 4. The in-phase solution �2=0, 1 is
extended by the change of Iext,2 within the interval −0.019
� Iext,2�0.020. In this interval two clusters of neurons show
synchronized firing with small phase difference, that is, en-
trainment occurs. To examine the robustness of this entrain-
ment, we plot this range of Iext,2 as a function of �1 in Fig. 6.
The remarkable feature of this phase diagram is the narrow
range of Iext,2 with short decay time constant �1, and it is
interesting that the pitchfork bifurcation described in Fig. 4

FIG. 2. �a� Absolute values of 	1
� , 	2

� , and 	11
� for the one-cluster

state �Q=1� of networks of IF neurons are plotted as a function of
g for Iext,1=0 , �1=3.5, and �2=0.1�1. 	1

� always takes 1 while 
	2
� 
 is

always less than 1. 
	11
� 
 is less than 1 only when synapses are

inhibitory �g�0�. These eigenvalues behave in the same manner
even with the other decay time �1�0. �b� �1−g phase diagram,
where we fix �2=0.1�1. A self-coupled single neuron �N=1� has the
stable periodic solution below g=1. However, synchronization of
multiple neurons �N�1� occurs with only inhibitory couplings g
�0 since the stability of a cluster is fulfilled with only inhibitory
couplings g�0. Beyond g=1, an excessive amount of positive syn-
aptic electric current leads bursting of neurons.

FIG. 3. The result of numerical simulations with N=100, �1

=3.5, and �2=0.1�1. Dots represent spike timing of neurons in a
stationary state, which is realized after a long run of simulation. �a�
With inhibitory synapses g=−0.5, the perfect in-phase synchroniza-
tion occurs. �b� With excitatory synapses g=0.5, we observe asyn-
chronous state, in which neurons fire periodically with uniformly
distributed phase shifts.

FIG. 4. �1−�2 bifurcation diagram for the two-cluster state,
where variable �2 denotes t2 /T �Q=2, 1�N1=N2 , g=−3, �2

=0.1�1, and Iext,1= Iext,2=0.� The solutions represented by thick
lines satisfy the stability of a mean state and stabilities of clusters,
while solutions represented by the dotted lines lack one or both
stabilities. The out-of-phase solutions plotted by the thin dotted line
��1�2.8� is invalid since in these solutions membrane potential vi

crosses the threshold � multiple times.
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explains this narrow range of Iext,2. In this bifurcation dia-
gram, the out-of-phase solutions merge into the in-phase so-
lutions at �1=0. Therefore, the entrained solution in Fig. 5
vanishes in the limit �1→0, and this vanishment explains the
zero range of Iext,2 at �1=0 in Fig. 6.

On the other hand, the out-of-phase solution ��2=0.5� is
considerably robust against the change of Iext,2, especially
with short �1 �−0.083� Iext,2�0.080 with �1=1.5�. Neverthe-
less, when we apply the external currents to halves
of neurons of both clusters �i.e., Q=4, r1=r2=r3
=r4=0.25, Iext,1= Iext, 3=0 , Iext, 2= Iext, 4�0, �1=0 , �2�0,
�3�0.5, �4�0.5�, the range for successful entrainment is
found to be narrow �−0.016� Iext,2= Iext,4�0.017 with �1
=1.5�. It seems that cluster synchronization easily breaks
when we apply heterogeneous external electric currents that
cause splitting of clusters.

V. ONE-CLUSTER STATE „Q=1… IN NETWORKS OF
HODGKIN-HUXLEY (HH) NEURONS

To explore the biological plausibility of synchronization
in IF neurons we study a more realistic neuron model that is
defined by the HH equations. The HH neuron, whose dynam-
ics is described in the Appendix, does not show intrinsic
firing without external stimulus. Therefore, we apply con-
stant external electric current Iext=10 �A/cm2� to all of the
HH neurons and analyze synchronization in intrinsically fir-
ing homogeneous HH neurons assuming the same synaptic

couplings as Eq. �50�. Figure 7 shows �1−g phase diagram,
where the condition for the stable one-cluster state �Q=1 and
2�N� is described. In the large area of inhibitory couplings
�g�0� we find stable in-phase synchronization. Beyond �1

=7.0 the behavior of 
	2
� 
 and 
	11

� 
 is similar to those of IF
neurons described in Fig. 2�a�, and the change of stability
occurs at g=0 because of 
	11

� 
. Below �1=7.0, however, syn-
chronization with inhibitory couplings takes place only be-
low a certain negative value of g, and excitatory couplings
can induce synchronization in some conditions. �1−g phase
diagram of IF neurons �Fig. 2�b�� can explain synchroniza-
tion in HH neurons with slowly decaying synapses, though
the synchronization condition of HH neurons with fast de-
caying synapses is more complicated than IF neurons.

VI. DISCUSSION

We have studied a cluster state of networks of spiking
neurons. We have shown the analytical method that can deal
with synchronization in the large size of neural networks
with arbitrary neuron dynamics and arbitrary interactions.
Employing this analysis we have investigated networks of IF
neurons interconnected through uniform chemical synapses.
In the analysis of the one-cluster state, we have found the
change of stability of a cluster, which has elucidated that
in-phase synchronization of multiple IF neurons occurs only
with inhibitory couplings �Fig. 2�. It must be noted that this
analytical result well explains the structure of interneurons in
the real nervous system, where interneurons are intercon-
nected through inhibitory chemical synapses. In addition, we
have investigated the entrainment of two clusters of IF neu-
rons with different excitability �Fig. 6�. We have explained
the narrow range of Iext,2 with short decay time constant �1 in
Fig. 6 by the bifurcation diagram described in Fig. 4. Fur-
thermore, we have investigated the one-cluster state of HH
neurons. HH neurons show stable in-phase synchronization
in the large parameter region of inhibitory chemical syn-
apses, though the synchronization condition of HH neurons
with fast decaying synapses is more complicated than IF
neurons �Fig. 7�.

FIG. 5. Entrainment of two clusters of neurons with different
excitability. The solution �2 is plotted against Iext,2 for the fixed
value of Iext,1=0 �Q=2, 1�N1=N2 , g=−3, �1=3.5, and
�2=0.1�1.�

FIG. 6. The upper and lower bounds of Iext,2 for entrainment of
two clusters of neurons are plotted against �1�Q=2, 1�N1

=N2 , �2=0.1�1, and Iext,1=0�. The numbers in the figure indicate
the value of g.

FIG. 7. �1−g phase diagram for the one-cluster state �Q=1� of
multiple Hodgkin-Huxley �HH� neurons �2�N� under the condi-
tion �2=0.1�1. “s” �“u”� in the figure indicates the region for the
stable �unstable� one-cluster state. Around the arrow we find a lot of
isolated regions for the stable one-cluster state. Note that we apply
constant external electric current Iext=10 �A/cm2� to all of HH
neurons so as to induce intrinsic firing of neurons.
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Although van Vreeswijk et al. have proposed another type
of stability criterion based on function G��� �14,15�, this
stability criterion is unsound in some conditions. One coun-
terexample of their criterion is a couple of IF neurons with
couplings J11=J22=−J12=−J21=g /2. With �1=3.5 and �2
=0.1�1, in-phase synchronization of these neurons becomes
unstable beyond the critical point g=1.11 as shown in Fig. 8.
While our analysis based on linear stability precisely yields
this critical point, van Vreeswijk’s criterion, namely, G���
=−g�e−T /2��0

1eT��S̃�T��+���− S̃�T��−����d� with T
=log�v0−vr /v0�, fails to give the critical point. Gerstner et
al. have also investigated networks of IF neurons �16�. Their
analysis, however, cannot treat the realistic form of synaptic
electric current S�t� that exerts the long-time influence after
activation within the finite size of the matrix.

The present decomposition of linear stability is simple
enough to investigate the general neuron dynamics including
FN neurons and HH neurons. Even when the behavior of
neurons are chaotic �17�, we are still able to evaluate the
stability of the cluster state using tangential Lyapunov expo-
nents and transversal Lyapunov exponents �18�, and such
technique may give a deeper understanding of the compli-
cated behavior of HH neurons around the arrow in Fig. 7. It
is interesting to apply the present analysis to networks in-
cluding pyramidal neurons as well as interneurons �19�. The
surface of the neocortex is subdivided into numerous colum-
nar organizations, each of which is composed of several lay-
ers of neurons �20�. The internal and external dynamics of
such columnar organizations would also be the future target
of the present analysis.

APPENDIX: THE HODGKIN-HUXLEY (HH) EQUATIONS

The HH equations are the four-dimensional ordinary dif-
ferential equations, which describe the spike generation of
the squid’s giant axon �13�. The dynamics of a neuron state
vector x= �v ,w1 ,w2 ,w3�T for a HH neuron is expressed as

Cmv̇ = ḡNaw2
3w1�vNa − v� + ḡKw3

4�vK − v� + ḡL�vL − v� + Iext,

�A1�

ẇ1 = �1�1 − w1� − �1w1, �A2�

ẇ2 = �2�1 − w2� − �2w2, �A3�

ẇ3 = �3�1 − w3� − �3w3 �A4�

with

�1 = 0.01�10 − v���exp10 − v
10

� − 1� , �A5�

�1 = 0.125 exp�− v/80� , �A6�

�2 = 0.1�25 − v���exp25 − v
10

� − 1� , �A7�

�2 = 4 exp�− v/18� , �A8�

�3 = 0.07 exp�− v/20� , �A9�

�3 = 1��exp30 − v
10

� − 1� , �A10�

where vNa=50�mV� , vK=−77�mV� , vL=−54.4�mV� , ḡNa

=120�mS/cm2� , ḡK=36�mS/cm2� , ḡL=0.3�mS/cm2� and
Cm=1 �F/cm2� In the present study we set Iext

=10�A/cm2� to induce intrinsic firing of a HH neuron.

FIG. 8. Stability of in-phase synchronization of a couple of IF
neurons interconnected with J11=J22=−J12=−J21=g /2 ��1=3.5 and
�2=0.1�1�. �a� Absolute values of 	1

� and 	2
� are plotted as a function

of g. Beyond g=1.11, the in-phase synchronization becomes un-
stable. �b� The result of numerical simulations with g=1.0. A couple
of neurons show in-phase synchronization. �c� The result of numeri-
cal simulations with g=1.2. Only a single neuron fires at high fre-
quency in the winner-take-all fashion.
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